
Characterizing a Reversible, 3D, Three-State Molecular Switch

Rafik Addou¹,*, Damian G. Allis ¹,*, Jeremy Barton¹,*, Brandon Blue¹,*, Adam Bottomley¹,*, Doreen Cheng¹,*, Nina Culum¹,*, Michael Drew¹,*, Tyler Enright¹,*, Alan Godfrey¹,*, Ryan Groome¹,*, Aru Hill¹,*, Taleana Huff¹,*, Robert J. Kirby¹,*, Mykhaylo Krykunov¹,*, Samuel Lilak¹,*, Hadiya Ma¹,*, Cameron J. Mackie¹,*, Oliver MacLean¹,*, Terry McCallum¹,*, Mathieu Morin¹,*, **Jonathan Myall**¹,*, Ryan Plumadore¹,*, Adam Powell¹,*, Henry Rodriguez¹,*, Luis Sandoval¹,*, Marc Savoie¹,*, Benjamin Scheffel¹,*, Marco Taucer¹,*, Denis Alexander Therien¹,*, Dušan Vobornik¹,*

Presenting author's e-mail: jmyall@nfcbn.com

Single-molecule switches are a rapidly developing class of molecular nanotechnology, with several attempts in recent years to realize device-like characteristics from motion of a single atom. 1,2 Herein, we present an exploration of a novel molecule tetrakis(iodomethyl)germane (Ge(CH₂I)₄; TIMe-Ge), which when deposited has a normal-facing CH₂I group. At 77 K the CH₂I is thermally driven and images as a 3-lobed feature. At 4K, the CH₂I "freezes" into one of its three potential energy-minimized rotamers. The CH₂I can, however, be mechanically and reversibly manipulated into either of the two other rotamer positions using AFM. We demonstrate this by $\Delta f(z)$ curves over the intended position, letting the attractive force pull the CH₂I into the new rotamer. $\Delta f(z)$ and constant-height scanning are used to study the feature and explore the force needed to rotate the CH₂I. With the probe tip fixed in position, tunnel current is shown to change as a function of CH₂I rotation, suggesting suitability as a three-state organic molecular switch.

Figure 1. (a) Ball-and-stick model of a TIMe-Ge molecule surface bound to a Si(100) 2x1 surface. (b-d) 4 K STM constant-height images of the three potential CH₂I rotamers of a given molecule. (e) Composite image of the rotamers from (b-d). (f) AFM constant-height scan of TIMe-Ge. Line discontinuities are attractive interactions with the molecule, pulling it into its three rotamers during the scan, resembling the composite STM image.

Reference

- [1] Eisenhut, F. *et al.* Inducing the controlled rotation of single o-MeO-DMBI molecules anchored on Au(111). *Surf. Sci.* **678**, 177–182 (2018).
- [2] Zhang, J. L. et al. Towards single molecule switches. Chem. Soc. Rev. 44, 2998–3022 (2015).
- [3] Sweetman, A. et al. Toggling bistable atoms via mechanical switching of bond angle. *Phys. Rev. Lett.* **106**, 136101 (2011).

¹ CBN Nano Technologies Inc., Ottawa, Ontario, Canada